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On the Universality of Geometrical and 
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We develop a three-parameter position-space renormalization group method 
and investigate the universality of geometrical and transport exponents of 
rigidity (vector) percolation in two dimensions. To do this, we study site-bond 
percolation in which sites and bonds are randomly and independently occupied 
with probabilities s and b, respectively. The global flow diagram of the renor- 
malization transformation is obtained which shows that the geometrical 
exponents of the rigid clusters in both site and bond percolation belong to the 
same universality class, and possibly that of random (scalar) percolation. 
However, if we use the same renormalization transformation to calculate the 
critical exponents of the elastic moduli of the system in bond and site percolation, 
we find them to be very different (although the corresponding values of the 
correlation length exponent are the same). This indicates that the critical 
exponent of the elastic moduli of rigidity percolation may not be universal, 
which is consistent with some of the recent numerical simulations. 

KEY WORDS: Rigidity percolation; elasticity; scalar percolation; univer- 
sality. 

1. I N T R O D U C T I O N  

For the past two decades random percolation networks (1) have been an 
important tool for the investigation of transport processes in disordered 
systems, such as porous media, ~2) gel polymers,(3'4) and composite solids. (5) 
Two of the most commonly studied percolation processes are bond and site 
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percolation. In bond percolation (BP) one removes at random a fraction of 
the bonds, whereas in site percolation (SP) sites (and all bonds connected 
to them) are removed randomly. Much of the attention has been focused 
on the properties of percolation networks near the percolation threshold Pc 
of the network. Consider a percolation network in which a fraction p of 
bonds (or sites) are present and the rest are absent. Near Pc the correlation 
length ~p diverges as 

~p~(p-p~)-~ (1) 

Scalar transport properties of percolation networks can be defined in a 
straightforward way. If we assign a finite conductance to the present bonds 
and a zero conductance (infinite resistance) to the absent bonds, then, near 
Pc the bulk conductivity a of the network vanishes as 

a ~ (p - Pc)' (2) 

The backbone of the network, i.e., the current-carrying part of the 
sample-spanning percolation cluster, has a fractal structure for any length 
scale less than ~p with a fractal dimension DB. The fractal dimension D9 
and the exponent v are completely universal and depend only on the 
dimensionality of the system. Aside from a few special cases, (6'7) t is also 
universal. In two dimensions, which is the focus of our paper, we have 
v = 4/3, t ~- 1.3, and ~8) DB ~-- 1.65. 

Vector transport properties of percolation networks, e.g., their elastic 
moduli, are more difficult to define and calculate. The main reason is that 
vector transport properties depend sensitively on the microscopic force 
laws between the bonds and/or sites of the network and, in principle, one 
can define a large number of different microscopic force laws between the 
bonds and/or sites. We consider here a percolation network whose bonds 
represent elastic elements (springs) that can be stretched and/or bent. The 
elastic energy of the system is given by (9) 

E - ~  E [(ui--Ily)'Rij]a eiY+ 2 2 (60:~k)2.ei:~k (3) 
( ij ) (ilk) 

where the first term of the right-hand side represents the contribution of 
the stretching or central forces (CFs), whereas the second term represents 
the contribution of the angle-changing or bond-bending (BB) forceS. Here, 

and fl are the central and BB force constants, respectively, ui is the 
(infinitesimal) displacement of site i, R• is a unit vector from i to j, and 
( j ik )  indicates that the sum is over all triplets in which the bonds j-i and 
i-k form an angle whose vertex is at i. The elastic moduli G of the network 
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can be defined by assigning a finite elastic constant e 0 to the present bonds 
and a zero elastic constant to the absent bonds. If both e and fl are non- 
zero, we have the so-called BB model. (9'1~ The percolation threshold of the 
BB model would be the same as that of scalar percolation defined above 
if each site of the network interacts with at least d ( d -  1)/2 of its nearest- 
neighbor sites in d dimensions, which, in practice, is the case. For this 
model, the elastic moduli G vanish as Pc is approached as 

a ~ (p - pc) ~b~ (4) 

The exponent fbb is also largely universal; in two dimensions we have tIL~ 
fbb ~- 3.96. Moreover, it has been suggested that (12'13~ fbb= t + 2 v  for any 
d~< 6, in excellent agreement with the numerical estimates. 

If fl = 0, we have the CF or rigidity percolation model in which only 
stretching or CFs are present. The percolation threshold P~.e of this system 
is not the same as that of scalar percolation (14"~s) because not every defor- 
mation of the network costs an elastic energy E. For example, for a 

s B S d-dimensional hypercubic network one has pose = Poe = 1, where P ce and Poe 
are the bond and site percolation thresholds, respectively. In fact, only if 
the coordination number of a d-dimensional network is larger than 2d does 
the network have nonzero G for any p > Poe" For the triangular network 
we have B_  Pc - 2 sin(~/18) ~- 0.347 and PcS = 1/2, whereas (~6'~7) pBce ~ 0.641 
and(~S) p S ~ 0.713. Near  P~e, the elastic moduli G vanish as 

G ~ ( p -  p~eV c (5) 

Moreover, a corresponding correlation length ~c can also be defined such 
that near Pc~ 

r ~ (P - Pc~)-~ (6) 

and the backbone of the elastic percolation cluster is a fractal object for 
any length scale less than ~c with a fractal dimension DEB. 

The universality class of CF percolation and the precise values of v c, 
DEB, and f~ have been controversial for several years. Earlier simula- 
tions(19 zl) had indicated that for BP in two dimensions, DEB-----1.95, 
v~ ~ 1.1, and fc ~ 1.45. Moreover, it was suggested (2~) that SP and BP may 
not even belong to the same universality class, and may be characterized 
by their own sets of critical components. For example, we have found 
that (ls'21) f~-~ 1.12 for SP on the triangular network. More recently, very 
accurate simulations (1~8) indicated that the critical properties of CF 
percolation are highly sensitive to the precise value of P~e, and that even 
for large networks near P~e there are large correction-to-scaling terms such 
that, e.g., Eq. (5) should be rewritten as 

G ~ ( p _ P c e ) f C [ a l + a 2 ( p _ P c e ) - Z ~ + a 2 ( p _ p c ~ )  ~2+ . , . ]  (7) 
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where the a's are constant, and At and A2 are correction-to-scaling 
exponents. Accordingly, it was found that (t6'~7) for BP, f c (d=2)~-3 .9 ,  
which is compatible with that of the BB model, and (16) Des ~-1.62, in 
agreement with that of BB and scalar models. However, these more 
accurate simulations also yielded (aS) fc(d= 2) ~- 1.12 for SP, and a small 
but significant difference between the values of v C for SP and BP was also 
observed, so that the controversy is still not resolved. 

In this paper we consider a percolation problem on CF networks in 
which both sites and bonds are randomly occupied with probabilities s and 
b, respectively. This is the so-called site-bond percolation, which, in the 
case of scalar percolation, has been considered by several authors. (22 24) 

Here we consider its analog in the CF percolation problem. We develop a 
three-parameter position-space renormalization group (PSRG) transforma- 
tion and obtain the global flow diagram for the system. From the flow 
diagram and the number of nontrivial fixed points of the PSRG transfor- 
mation (i.e., those that are not zero or unity), we can determine whether 
SP and BP on CF networks belong to the same universality class. 
Moreover, we also determine fc for both SP and BP to see whether they 
are significantly different. 

2. P O S I T I O N - S P A C E  R E N O R M A L I Z A T I O N  FOR R I G I D I T Y  
P E R C O L A T I O N  

Our PSRG transformation for the site-bond problem is in the spirit of 
that for the scalar percolation case. (24'25) However, there is a significant 
difference between our PSRG transformation for site-bond percolation in 
CF networks and that of scalar percolation, (24"25) and also the PSRG 
method for the BB model. (~~ As mentioned above, in the CF percolation 
problem not every sample-spanning cluster of bonds is rigid and gives rise 
to nonzero G, because one can deform many different configurations of the 
network without changing the elastic energy E. Thus, the usual rule of RG 
transformations that every sample-spanning cluster of present bonds in the 
RG cell must be included in the PSRG transformation cannot be used. 
Instead, we adopt the following rule: only those sample-spanning clusters of 
the RG cell that are rigid and have nonzero values of G are included in the 
PSRG transformation. To find such clusters, we have to calculate the 
elastic moduli of all configurations of the RG cell. This is done by mini- 
mizing E with respect to u i and solving the resulting set of linear equations 
that govern the displacements of the internal nodes of the RG cell. Having 
calculated ui, we can determine the elastic moduli G. In this sense, our 
PSRG approach to the CF percolation problem is novel. Moreover, our 
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approach also allows us to calculate fc, since we calculate the elastic 
moduli of the RG cell. 

Using this rule, we now derive the PSRG transformations for site and 
bond occupation probabilities. We use a two-cell approach in which a 
cluster consists of two adjacent cells. This is necessitated by the fact that 
the spanning clusters have to be rigid and, as pointed out by Shapiro, (25) 
who studied the scalar site-bond percolation, this sort of approximation 
yields more accurate results than the one-cell approach of Nakanishi and 
Reynolds. (24) Thus, to derive the RG transformation for s', the renor- 
malized site occupation probability, the cell shown in Fig. la is mapped 
onto the configuration with one site and three bonds (which is the only 
configuration that can be rigid). Therefore, 

s,b,3 = s 3 [ b  9 + 9b 8 + 30b7(1 - b) 2 + 33b6(1 - b) 3 + 12b5(1 - b) 4] 

-R,(b,s) (8) 

Note that a//sites in the original cell have to be occupied in order for the 
cell to be rigid. A similar approach is taken for calculating the renormalized 
bond occupation probability b'. Thus, various configurations of the cell 

(o) 

Fig. 1. RG cells used in this paper. (a) One-cell configurations, (b) two-ceil configurations. 
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shown in Fig. lb, with 6 sites and 18 bonds, are mapped onto one renor- 
malized site. Noting that there are a few configurations of the renormalized 
cells that can be rigid, we obtain 

s'2b'[b '5 + 5b '4 + 2b'3(1 _ b') 2] 

=s6(b 18+ 18b 17 + . . . ) + s S ( 1 - s ) ( b  14+ . . .)  

+ S5(1 - s ) ( b  13 + -..) + s4(1 - s) 2 (b 1~ + . . . )  

+ " =R2(b ,  s) (9) 

The rest of the computation is done in the usual way. Equations (8) 
and (9) provide a complete set of RG transformations for our problem. 
The fixed points of R1 and R2, i.e., the solutions (b*, s*) of the equations 
sb 3 = Rl(b ,  S)  and sZb[b 5 + 5b 4 + 2b3(1 - b) 2] = Rz(b , s), are (0, 0), (1, 1), 
and (0.6720, 0.7974). The first two sets of fixed points are trivial, while 
the last one represents an estimate of the true (pcBe, S Pce), which are 
(0.641, 0.713). Thus, our estimate of pffe differs from its true value by only 
4.8 %, while the difference between our estimate of pS  and its true value is 
about 12%. If we linearize R1 and R2, we obtain 

fib' = 0.57346s + 0.91786b (10) 

6s' = 0.94076s + 0.42336b (11) 

where, e.g., f i b = b - b * .  Equations (10) and (11) have two eigenvalues, 
(2~, 22)= (1.422, 0.4365), but only 2~ > 1 is relevant and therefore vc= 
In ban 2~, where b = 31/2 is the scale factor of the cell size (assuming that 
the length of each bond is unity), which yields 

v c ~- 1.56 (12) 

The fact that there is only one set of nontrivial fixed points, and only one 
relevant eigenvalue, means that the geometrical exponents of the CF 
clusters in SP and BP belong to the same universality class. This can be 
easily seen in Fig. 2, where we show the global flow diagram of the RG 
transformations. It is seen that the point (0.672, 0.7974) can be reached 
from both the line b = 1 and the line s = 1, which is indicative of univer- 
sality. From the flow diagram we also obtain b * ( s = l ) = 0 . 4 9 8  and 
s*(b = 1 )=  0.741. Thus, in this way our estimate of pS e improves, while that 
of P c~ becomes less accurate. Moreover, in the two-cell approximation and 
in the limit s = 1, we obtain b * =  0.41, while in the limit b = 1 we obtain 
s*=0.87.  The corresponding values of vc are 1.65 and 1.50, respectively, 
not much different from one another or from vc---1.56 found at 
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Fig. 2. 
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Global flow diagram for the RG transformations. 

(0.672, 0.7974). This is again indicative of the universality of v c. Although 
some of these estimates are not very accurate, the qualitative features of the 
global flow diagram are usually independent of the values of (b*, s*). Since 
it has already been argued that (16'17) the geometrical exponents of CF 
clusters in BP on the triangular network belong to the universality class of 
scalar percolation, the conclusion is that the geometrical exponents of both 
rigidity BP and SP may belong to the universality class of scalar percolation. 

However, the global flow diagram cannot provide any information 
about the universality off< in BP and SP. We can calculate fc /vc using our 
RG transformation. Following Feng and Sahimi, (~~ we calculate an RG 
transformation for ~', the renormalized stretching force constant (or E', the 
renormalized elastic energy associated with the deformation of the renor- 
malized RG cell). To do this, we impose a fixed displacement on the 
exterior nodes of the RG cell and calculate the displacements of the inter- 
nal nodes of the cell, which is what we did in order to derive Eqs. (8) 
and (9). Using a procedure that was first developed by Bernasconi (27) for 
percolation conductivity, the RG transformation for c( is approximated by 

s'2b '6 ln(2.727e') + s'2b'5(1 - b') ln(0.8e') + ... 

=s6[b181n(2 .727oO+b:Vln(2~)+ ..-] +sS(1 - s ) ( b l 4 . . . ) +  . . .  (13) 

where terms such as 2.727c(, 0.8c(,... represent the equivalent stretching 
force constant of the corresponding configuration of the renormalized RG 
cell [see Eqs. (8) and (9)]. In the percolation conductivity problem, such 
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terms are replaced by the corresponding conductivity of the RG cell. The 
critical exponent fc is then given by (1~ 

f~ ln(1/2~) (14) 
Vc In b 

where 2~ = Oe'/Oa, evaluated at (b*, s*, e*), where c~* is the fixed point of 
Eq. (13). 

Using this approximation, we obtain fc /vc  ~- 2.60, which, together with 
Vc "~ 1.56, yields fc ~ 4.05, which is only 2.4 % larger than fbb ~-- 3.96 for the 
BB model. However, even this value of fc is misleading, because it says 
nothing about the universality of f t .  A better way of investigating this is to 
calculate fc/Vc at (0.41, 1) and (1, 0.87). We find that at (0.41, 1), which 
corresponds to the pure BP, fc/V~ ~-3.66, while at (1, 0.87), the pure SP, 
fc /vc  ~-0.91. These two values differ by a factor of 4, and the difference is 
of the same order of magnitude as that found in the simulations. (16 18) 
Moreover, the value of fc/Vc at (0.41, 1) is close to the numerical 
estimate(16 18) found for BP, while f~/v  c at (1, 0.87) is close to the numerical 
estimate for SP. (18) Since these two values of f~/Vc are very different, 
whereas the values of vc calculated at the same points are not much 
different (they differ by about 10%), this may be interpreted as a strong 
indication that fc is not  universal, although one should perhaps consider 
larger RG cells in order to check further this conclusion. 
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